API Endpoints
Prediction API
- POST
/api/v1/prediction/{your-chatflowid}
Request Body
Key | Description | Type | Required |
---|---|---|---|
question | User's question | string | Yes |
overrideConfig | Override existing flow configuration | object | No |
history | Prepend history messages | array | No |
You can use the chatflow as an API and connect it to frontend applications.
Override Config
You can override input configuration with the overrideConfig
property.
{
"question": "Hey, how are you?",
"overrideConfig": {
"sessionId": "123",
"returnSourceDocuments": true
}
}
History
You can prepend history messages to provide context to the LLM:
{
"question": "Hey, how are you?",
"history": [
{
"role": "apiMessage",
"content": "Hello, how can I help?"
},
{
"role": "userMessage",
"content": "Hi, my name is Alice"
},
{
"role": "apiMessage",
"content": "Hi Alice, how can I assist you today?"
}
]
}
Persisting Memory
If the chatflow contains Memory nodes, you can pass a sessionId
to persist the conversation state:
{
"question": "Hey, how are you?",
"overrideConfig": {
"sessionId": "123"
}
}
Image Uploads
When image upload is enabled, you can include image data in the request:
{
"question": "Can you describe this image?",
"uploads": [
{
"data": "",
"type": "file",
"name": "example.png",
"mime": "image/png"
}
]
}
Speech to Text
When speech-to-text is enabled, you can send audio data:
{
"uploads": [
{
"data": "data:audio/webm;codecs=opus;base64,GkXf",
"type": "audio",
"name": "speech.webm",
"mime": "audio/webm"
}
]
}
Authentication
Include an API key in the Authorization header:
Authorization: Bearer <your-api-key>
Vector Upsert API
- POST
/api/v1/vector/upsert/{your-chatflowid}
Request Body
Key | Description | Type | Required |
---|---|---|---|
overrideConfig | Override existing flow configuration | object | No |
stopNodeId | Specific vector store node to upsert | array | No |
Document Loaders with Upload
For document loaders that support file uploads, use multipart/form-data
:
POST /api/v1/vector/upsert/{your-chatflowid}
Content-Type: multipart/form-data
files: (binary)
returnSourceDocuments: true
Document Loaders without Upload
For other document loaders, use a JSON body:
{
"overrideConfig": {
"returnSourceDocuments": true
}
}
Authentication
Include an API key in the Authorization header:
Authorization: Bearer <your-api-key>
3. Message API
- GET
/api/v1/chatmessage/{your-chatflowid}
- DELETE
/api/v1/chatmessage/{your-chatflowid}
Query Parameters
Param | Type | Description |
---|---|---|
sessionId | string | Session identifier |
sort | enum | ASC or DESC |
startDate | string | Start date for filter |
endDate | string | End date for filter |
Authentication
The Message API is restricted to admin users. Use Basic Authentication:
Authorization: Basic <base64-encoded-credentials>
Implementation Examples
Here are some examples of how to use the AnswerAI API in different programming languages:
Python
import requests
API_URL = "<your-answer-ai-host-domain>/api/v1/prediction/<chatflowid>"
API_KEY = "your-api-key"
headers = {
"Authorization": f"Bearer {API_KEY}",
"Content-Type": "application/json"
}
data = {
"question": "What is AnswerAI?",
"overrideConfig": {
"sessionId": "unique-session-id"
}
}
response = requests.post(API_URL, json=data, headers=headers)
print(response.json())
JavaScript
const API_URL = '<your-answer-ai-host-domain>/api/v1/prediction/<chatflowid>'
const API_KEY = 'your-api-key'
async function query(data) {
const response = await fetch(API_URL, {
method: 'POST',
headers: {
Authorization: `Bearer ${API_KEY}`,
'Content-Type': 'application/json'
},
body: JSON.stringify(data)
})
return await response.json()
}
query({
question: 'What is AnswerAI?',
overrideConfig: {
sessionId: 'unique-session-id'
}
}).then((response) => console.log(response))
These examples demonstrate how to make basic API calls to AnswerAI. Remember to replace <chatflowid>
with your actual chatflow ID and use your specific API key for authentication.